Kamis, 22 Mei 2014

Mesin 2 Tak

2 TAK 

Mesin dua tak adalah mesin pembakaran dalam yang dalam satu siklus pembakaran terjadi dua langkah piston, berbeda dengan putaran empat-tak yang mempunyai empat langkah piston dalam satu siklus pembakaran, meskipun keempat proses (intake, kompresi, tenaga, pembuangan) juga terjadi.
Mesin dua tak juga telah digunakan dalam mesin diesel, terutama rancangan piston berlawanan, kendaraan kecepatan rendah seperti mesin kapal besar, dan mesin V8 untuk truk dan kendaraan berat lainnya.


Animasi cara kerja mesin dua tak.

Prinsip kerja

Untuk memahami prinsip kerja, perlu dimengerti istilah baku yang berlaku dalam teknik otomotif :
  • TMA (titik mati atas) atau TDC (top dead centre), posisi piston berada pada titik paling atas dalam silinder mesin atau piston berada pada titik paling jauh dari poros engkol (crankshaft).
  • TMB (titik mati bawah) atau BDC (bottom dead centre), posisi piston berada pada titik paling bawah dalam silinder mesin atau piston berada pada titik paling dekat dengan poros engkol (crankshaft).
  • Ruang bilas yaitu ruangan dibawah piston dimana terdapat poros engkol (crankshaft), sering disebut dengan bak engkol (crankcase) berfungsi gas hasil campuran udara, bahan bakar dan pelumas bisa tercampur lebih merata.
  • Pembilasan (scavenging) yaitu proses pengeluaran gas hasil pembakaran dan proses pemasukan gas untuk pembakaran dalam ruang bakar.

Langkah kesatu

Piston bergerak dari TMA ke TMB.
  1. Pada saat piston bergerak dari TMA ke TMB, maka akan menekan ruang bilas yang berada di bawah piston. Semakin jauh piston meninggalkan TMA menuju TMB, tekanan di ruang bilas semakin meningkat.
  2. Pada titik tertentu, piston (ring piston) akan melewati lubang pembuangan gas dan lubang pemasukan gas. Posisi masing-masing lubang tergantung dari desain perancang. Umumnya ring piston akan melewati lubang pembuangan terlebih dahulu.
  3. Pada saat ring piston melewati lubang pembuangan, gas di dalam ruang bakar keluar melalui lubang pembuangan.
  4. Pada saat ring piston melewati lubang pemasukan, gas yang tertekan dalam ruang bilas akan terpompa masuk dalam ruang bakar sekaligus mendorong gas yang ada dalam ruang bakar keluar melalui lubang pembuangan.
  5. Piston terus menekan ruang bilas sampai titik TMB, sekaligus memompa gas dalam ruang bilas masuk ke dalam ruang bakar

Langkah kedua

Piston bergerak dari TMB ke TMA.
  1. Pada saat piston bergerak TMB ke TMA, maka akan menghisap gas hasil percampuran udara, bahan bakar dan pelumas masuk ke dalam ruang bilas. Percampuran ini dilakukan oleh karburator atau sistem injeksi. (Lihat pula:Sistem bahan bakar)
  2. Saat melewati lubang pemasukan dan lubang pembuangan, piston akan mengkompresi gas yang terjebak dalam ruang bakar.
  3. Piston akan terus mengkompresi gas dalam ruang bakar sampai TMA.
  4. Beberapa saat sebelum piston sampai di TMA, busi menyala untuk membakar gas dalam ruang bakar. Waktu nyala busi sebelum piston sampai TMA dengan tujuan agar puncak tekanan dalam ruang bakar akibat pembakaran terjadi saat piston mulai bergerak dari TMA ke TMB karena proses pembakaran sendiri memerlukan waktu dari mulai nyala busi sampai gas terbakar dengan sempurna.

Perbedaan desain dengan mesin empat tak

  • Pada mesin dua tak, dalam satu kali putaran poros engkol (crankshaft) terjadi satu kali proses pembakaran sedangkan pada mesin empat tak, sekali proses pembakaran terjadi dalam dua kali putaran poros engkol.
  • Pada mesin empat tak, memerlukan mekanisme katup (valve mechanism) dalam bekerja dengan fungsi membuka dan menutup lubang pemasukan dan lubang pembuangan, sedangkan pada mesin dua tak, piston dan ring piston berfungsi untuk menbuka dan menutup lubang pemasukan dan lubang pembuangan. Pada awalnya mesin dua tak tidak dilengkapi dengan katup, dalam perkembangannya katup satu arah (one way valve) dipasang antara ruang bilas dengan karburator dengan tujuan :
    1. Agar gas yang sudah masuk dalam ruang bilas tidak kembali ke karburator.
    2. Menjaga tekanan dalam ruang bilas saat piston mengkompresi ruang bilas.
  • Lubang pemasukan dan lubang pembuangan pada mesin dua tak terdapat pada dinding silinder, sedangkan pada mesin empat tak terdapat pada kepala silinder (cylinder head). Ini adalah alasan paling utama mesin 4 tak tidak menggunakan oli samping.

Kelebihan dan kekurangan

Kelebihan mesin dua tak

Dibandingkan mesin empat tak, kelebihan mesin dua tak adalah :
  1. Mesin dua tak lebih bertenaga dibandingkan mesin empat tak.
  2. Mesin dua tak lebih kecil dan ringan dibandingkan mesin empat tak.
    • Kombinasi kedua kelebihan di atas menjadikan rasio berat terhadap tenaga (power to weight ratio) mesin dua lebih baik dibandingkan mesin empat tak.
  3. Mesin dua tak lebih murah biaya produksinya karena konstruksinya yang sederhana.
Meskipun memiliki kelebihan tersebut di atas, jarang digunakan dalam aplikasi kendaraan terutama mobil karena memiliki kekurangan.

Kekurangan mesin dua tak

Kekurangan mesin dua tak dibandingkan mesin empat tak
  1. Efisiensi mesin dua tak lebih rendah dibandingkan mesin empat tak.
  2. Mesin dua tak memerlukan oli yang dicampur dengan bahan bakar (oli samping/two stroke oil) untuk pelumasan silinder mesin.
    • Kedua hal di atas mengakibatkan biaya operasional mesin dua tak lebih tinggi dibandingkan mesin empat tak.
  3. Mesin dua tak menghasilkan polusi udara lebih banyak, polusi terjadi dari pembakaran oli samping dan gas dari ruang bilas yang terlolos masuk langsung ke lubang pembuangan.
  4. Pelumasan mesin dua tak tidak sebaik mesin empat tak, mengakibatkan usia suku cadang dalam komponen ruang bakar relatif lebih rendah.

Cara Membuat Blog


Cara Membuat Blog

Masuk ke Blogger ,sama halnya seperti daftar Facebook, di blogger juga harus mempunyai email Gmail terlebih dahulu, yang belum mempunyai email Gmail, harap membuat dulu. Untuk mendaftar, silakan isikan nama email Gmail beserta passwordnya, sama seperti log in ke gmail.com . Setelah itu klik Sign In

Cara Mudah Membuat Blog
Cara Mudah Membuat Blog
Setelah itu Sobat akan dibawa ke tampila seperti ini, Sobat tinggal klik Buat Blog Baru
Cara Mudah Membuat Blog
Gbr. 2 Cara Membuat Blog
Nanti akan ada menu melayang seperti gambar dibawah ini. Isikan Judul dan  Alamat blog dengan nama blog sesuai keinginan Sobat, dan Apabila Sudah diisi alamat blognya maka nanti ada tulisan dibawahnya Alamat blog ini tersedia, kalau tidak sobat bisa mengganti nama blog yang lainnya seperti namablog999 atau terserah sobat. Nah, apabila sudah kini tinggal memilih template atau tampilan blog, pilih sesuai selera Sobat. Untuk template bisa dirubah lagi jadi pilih kalau merasa tidak ada yang bagus, pilih sembarang saja.
Cara Mudah Membuat Blog google
Gbr. 3 Cara Membuat Blog di Blogspot
Setelah selesai, Selamat blog Sobat sudah jadi, tinggal klik Mulai mengeposkan untuk membuat artikel terbaru bagi blog Sobat atau klik gambar pensilnya.
Cara Mudah Membuat Blog gratis
Gbr. 4 Cara Mudah Membuat Blog

Nanti akan tampil seperti gambar dibawah ini, tinggal ikuti sesuai petunjuknya karena sama dengan menulis di Ms.Word, setelah selesai membuat artikel tinggal klik Publikasikan
Cara  Membuat Blog
Gbr. 5 Cara  Membuat Blog
Itulah langkah-langkah mengenai cara membuat blog gratis dan mudah di blogspot. Semoga tulisan ini bisa membantu Sobat yang mau membuat blog gratis dan bisa mempunyai blog di blogspot

Sabtu, 10 Mei 2014

Teknologi EFI (Electronic Fuel Injection)


Teknologi EFI (Electronic Fuel Injection)

EFI adalah sebuah kata singkatan dari Electronic Fuel Injection. Adapun pengertian dari EFI adalah sebuah sistem penyemprotan bahan bakar yang dalam kerjanya dikontrol secara elektronik agar didapatkan nilai campuran udara dan bahan bakar selalu sesuai dengan kebutuhan motor bakar, sehingga didapatkan daya motor yang optimal dengan pemakaian bahan bakar yang minimal serta mempunyai gas buang yang ramah lingkungan. Dalam kehidupan sehari hari nama EFI telah dipakai oleh merk Toyota, sedangkan merk lain mempunyai nama nama yang berbeda, akan tetapi prinsip dari semua sistem tersebut adalah sama.


Fungsi dan cara kerja injeksi

Fungsi dan cara kerja komponen injeksi Bahan bakar bensin elektronik Sistem EFI itu terdiri dari tiga system utama,yaitu system bahan bakar,system induksi udara,dan system control elektronik. Untuk sepeda motornya bisa dilihat di Sepeda Motor Injeksi Honda.


Sistem Bahan bakar

Sitem Bahan Bakar berfungsi untuk menyalurkan bahan bakar dari tangki ke ruang bakar.
Komponen system bahan bakar terdiri atas


Pompa Bahan bakar

Pompa bahan bakar berfungsi utuk menyalurkan bahan bakar dari tangki ke injector. Pompa bahan bakar yang digunakan adalah pompa bahan bakar listrik.


Fuel pulsation damper

Fuel pulsation damper berfungsi sebagai penyerap perubahan tekanan pada saluran tekanan karena adanya injeksi. Tekanan bahan bakar dalam intake manifold dipertahankan oleh pressure regulator.


Pressure Regulator

Pressure regulator berfungsi mengatur tekanan bahan bakar ke injector-injektor.Jumlah bahan bakar yang di injeksikan diatur oleh sinyal yang di berikan ke injector sehingga tekanan harus tetap pada tiap-tiap injketor.Untuk mendapatkan jumlah penyemprotan yang tepat,tekanan bahan bakar harus dipertahankan lebih kurang 2,55 kg/cm2.


Injektor

Injektor adalah sebuah nozzle elektromagnetik yang kerjanya dikontrol leh computer.Injektor dilengkapi dengan heat insulator pada saluran masuk atau pada kepala slinder yang dekat dengan lubang pemasukan.


Cold start injektor

Cold start Injektor digunakan untuk mensuplai bahan-bahan pada saat suhu motor masih rendah.Injektor ini dipsang di baian tengah ruangan udara masuk. Injektor bekerja hanya pada saat start bila temperature air pendingin di bawah 220 Celsius.

Sistem induksi udara berfungsi untuk menyediakan sejumlah udara yang diperlukan untuk pembakaran terdiri atas:

Throttle body

Throttle body terdiri atas katup therottle untuk mengontroludara masuk,sebuah system by pass udara yang mengatur aliran udara pada putaran idle dan sebuah throttle position sensor untuk menyensor kondisi terbukanya katup therottle.

Katup udara

Katup udara di gunakan untuk fast idle yang bekerjanya oleh bimetal dan heat coil motor dalam keadaan dingin.Katup udara di pasangkan pada permukaan samping kanan slinder.Jika putaran fast idle selama pemanasan tidak stabil atau rendah maka hali ini antara lain disebabkan oleh kesalahan pembukaan katup udara.

Air flow meter

Air flow meter mendeteksi jumlah udara yang masuk dan mengirimkan sinyal ke computer yang menentukan dasar jumlah injeksi.Air flow meter terdiri atas plat pengukur,pegas kembali ,baut penyekat campuran idle,sensor udaa masuk dan switch pompa bahan bakar.


System Kontrol Elektronik (ECU)

Kalau komputer mempunyai CPU, maka pada sistem Injeksi mempunyai ECU (Electronic Control Unit) Sistem Kontrol elektronik mempunyai bermacam-macam sensor yang terdiri atas air flow meter,Sensor air pendingin,sensor psisi katup gas,sensor udara masuk,sensor gas tekan,dan sensor tekanan mesin.Perangkat ini akan menentukan lama kerja injector.Kelengkapan yang lain adalah main relay yang menyediakan sumber arus listrik ke computer. Circuit opening relay yang mengontrol kerja pompa bahan bakar dan sebuah resistor yang menstabilkan kerja injector.

Mesin 4 Tak


PENGERTIAN DAN CARA KERJA MESIN 4 TAK, 2 TAK

4 TAK 

Four stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah tenaga memerlukan empat proses langkah naik-turun piston, dua kali rotasi kruk as, dan satu putaran noken as (camshaft).
Empat proses tersebut terbagi dalam siklus :
Langkah hisap : Bertujuan untuk memasukkan kabut udara – bahan bakar ke dalam silinder.  Sebagaimana tenaga mesin diproduksi tergantung dari jumlah bahan-bakar yang terbakar selama proses pembakaran.
Prosesnya adalah ;
  1. Piston bergerak dari Titik Mati Atas (TMA) menuju Titik Mati Bawah (TMB).
  2. Klep inlet terbuka, bahan bakar masuk ke silinder
  3. Kruk As berputar 180 derajat
  4. Noken As berputar 90 derajat
  5. Tekanan negatif piston menghisap kabut udara-bahan bakar masuk ke silinder
—————————————————————————————————————————————–
LANGKAH KOMPRESI
Langkah Kompresi
Langkah Kompresi
Dimulai saat klep inlet menutup dan piston terdorong ke arah ruang bakar akibat momentum dari kruk as dan flywheel.
Tujuan dari langkah kompresi adalah untuk meningkatkan temperatur sehingga campuran udara-bahan bakar dapat bersenyawa. Rasio kompresi ini juga nantinya berhubungan erat dengan produksi tenaga.
Prosesnya sebagai berikut :
  1. Piston bergerak kembali dari TMB ke TMA
  2. Klep In menutup, Klep Ex tetap tertutup
  3. Bahan Bakar termampatkan ke dalam kubah pembakaran (combustion chamber)
  4. Sekitar 15 derajat sebelum TMA , busi mulai menyalakan bunga api dan memulai proses pembakaran
  5. Kruk as mencapai satu rotasi penuh (360 derajat)
  6. Noken as mencapai 180 derajat
—————————————————————————————————————————————–
LANGKAH TENAGA
Langkah Tenaga
Langkah Tenaga
Dimulai ketika campuran udara/bahan-bakar dinyalakan oleh busi. Dengan cepat campuran yang terbakar ini merambat dan terjadilah ledakan yang tertahan oleh dinding kepala silinder sehingga menimbulkan tendangan balik bertekanan tinggi yang mendorong piston turun ke silinder bore. Gerakan linier dari piston ini dirubah menjadi gerak rotasi oleh kruk as. Enersi rotasi diteruskan sebagai momentum menuju flywheel yang bukan hanya menghasilkan tenaga, counter balance weight pada kruk as membantu piston melakukan siklus berikutnya.
Prosesnya sebagai berikut :
  1. Ledakan tercipta secara sempurna di ruang bakar
  2. Piston terlempar dari TMA menuju TMB
  3. Klep inlet menutup penuh, sedangkan menjelang akhir langkah usaha klep buang mulai sedikit terbuka.
  4. Terjadi transformasi energi gerak bolak-balik piston menjadi energi rotasi kruk as
  5. Putaran Kruk As mencapai 540 derajat
  6. Putaran Noken As 270 derajat
—————————————————————————————————————————————–
LANGKAH BUANG
Exhaust stroke
Exhaust stroke
Langkah buang menjadi sangat penting untuk menghasilkan operasi kinerja mesin yang lembut dan efisien. Piston bergerak mendorong gas sisa pembakaran keluar dari silinder menuju pipa knalpot. Proses ini harus dilakukan dengan total, dikarenakan sedikit saja terdapat gas sisa pembakaran yang tercampur bersama pemasukkan gas baru akan mereduksi potensial tenaga yang dihasilkan.
Prosesnya adalah :
  1. Counter balance weight pada kruk as memberikan gaya normal untuk menggerakkan piston dari TMB ke TMA
  2. Klep Ex terbuka Sempurna, Klep Inlet menutup penuh
  3. Gas sisa hasil pembakaran didesak keluar oleh piston melalui port exhaust menuju knalpot
  4. Kruk as melakukan 2 rotasi penuh (720 derajat)
  5. Noken as menyelesaikan 1 rotasi penuh (360 derajat)
—————————————————————————————————————————————–
FINISHING PENTING — OVERLAPING
Overlap adalah sebuah kondisi dimana kedua klep intake dan out berada dalam possisi sedikit terbuka pada akhir langkah buang hingga awal langkah hisap.
Berfungsi untuk efisiensi kinerja dalam mesin pembakaran dalam. Adanya hambatan dari kinerja mekanis klep dan inersia udara di dalam manifold, maka sangat diperlukan untuk mulai membuka klep masuk sebelum piston mencapai TMA di akhir langkah buang untuk mempersiapkan langkah hisap. Dengan tujuan untuk menyisihkan semua gas sisa pembakaran, klep buang tetap terbuka hingga setelah TMA. Derajat overlaping sangat tergantung dari desain mesin dan seberapa cepat mesin ini ingin bekerja.
manfaat dari proses overlaping :
  1. Sebagai pembilasan ruang bakar, piston, silinder dari sisa-sisa pembakaran
  2. Pendinginan suhu di ruang bakar
  3. Membantu exhasut scavanging (pelepasan gas buang)
  4. memaksimalkan proses pemasukkan bahan-bakar

Macam – macam kopling



Macam – macam kopling pada mobil

Kopling adalah komponen yang berguna untuk memperhalus perpindahan gigi , sekaligus untuk mempermudah melakukan pengereman. Menurut teori yang ada , kopling banyak sekali modelnya. Namun untuk kali ini saya hanya mengkhususkan pembahasan macam – macam kopling untuk mobil. Kopling mobil termasuk ke dalam kopling kering, yang artinya kopling ini hanya dapat bekerja dalam kondisi kering. Lain halnya dengan kopling motor, yang termasuk ke dalam kopling basah. Perbedaan ini membuat kampas kopling mobil dan kampas kopling motor berbeda dari segi bahannya. Kopling mobil tidak bisa bekerja bila dalam keadaan basah atau terkena oli. Maka yang terjadi kopling dapat selip. Lain halnya dengan kampas kopling sepeda motor yang harus terkena oli. Dan bila kampas kopling motor tidak terkena oli, maka kampas kopling akan cepat habis. Hal ini disebabkan kampas kopling motor mudah aus, bila tidak terkena oli.

Kembali ke topik pembicaraan macam – macam kopling pada mobil, maka kopling mobil dibedakan berdasarkan bentuk dari clutch cover nya. Bentuk clutch cover dari mobil ada 2 macam yaitu :

1. Kopling diafragma
Kopling ini dikenal dengan nama kopling diafragma, sebab clutch cover atau rumah koplingnya menggunakan pegas diafragma. Pegas ini berbentuk seperti piringan , dengan bagian tengahnya dibelah – belah seperti sirip, yang bentuknya hampir menyerupai diafragma. Untuk konstruksi lainnya tetap sama seperti jenis kopling mobil lainnya yaitu, adanya pressure plate atau plat tekan dan kampas kopling. Karena pegasnya yang hanya satu , kondisi penekanan pegas ke plat tekan akan selalu sama, walaupun kondisi pegasnya sudah melemah. Akibatnya penekanan plat tekan ke kampas kopling akan merata, sehingga terhindar dari kemungkinan selip. Kelemahan dari kopling tipe ini adalah tidak dapat memberikan tekanan yang lebih kuat dibanding tipe kopling mobil coil spring, sebab jumlah pegas yang hanya satu. Untuk itu kopling ini hanya cocok untuk mobil berbeban ringan , seperti sedan.

2. kopling pegas koil ( coil spring)
Kopling ini menggunakan pegas tipe koil untuk konstruksi rumah koplingnya. Untuk komponen lainnya tetap sama yaitu menggunakan kampas kopling dan plat tekan. Pegas kopling tipe ini  sangat banyak, tergantung pada ukurannya. Pegas kopling yang banyak ini membuat kekuatan pegasnya sangat kuat untuk menekan, untuk itulah tipe ini sangat cocok digunakan untuk mobil dengan daya angkut berat, seperti truk. Tapi kelemahan tipe ini adalah pegas yang banyak ini membuat bila ada satu pegas lemah atau patah, membuat kopling jadi mudah s

Cara Menyetel Celah Katup

Cara Menyetel Celah Katup Menyetel celah katup (valve clearance) merupakan salah satu dari langkah penyetelan awal sebelum menghidupkan mesin. Hal ini dikarenakan celah katup adalah komponen yang sangat penting dalam mengatur sistem kerja dari mesin 4 tak. Terkait dengan hal tersebut ada beberapa alasan mengapa celah katup perlu untuk disetel, yaitu: Mengacu pada adanya penyebaran panas (pemuaian), maka pada rocker arm dan ujung batang katup harus terdapat celah katup. Kalau celah katup terlalu longgar atau terlalu sempit, maka akan timbul masalah seperti halnya sebagai berikut: a. Jika celah katup terlalu sempit, maka katup akan membuka terlalu awal dan menutup dengan lambat, sehingga dapat mengakibatkan terjadinya salah pengapian, atau pengapian balik. b. Jika celahnya terlalu longgar, maka katup akan membuka terlambat dan menutup terlalu cepat, sehingga dapat menimbulkan suara berisik dan getaran. Karena perannya yang penting, maka dalam menyetel celah katup harus benar, jika tidak maka akan menimbulkan masalah-masalah seperti diatas, dan tentunya umur dari mesin menjadi lebih pendek. cara menyetel celah katup. Sebelum itu, hendaknya anda menyiapkan peralatan yang akan digunakan: 1. Tool box (obeng minus/plus, kunci ring) 2. Kunci busi 3. Kunci T 12 4. Feeler gauge 5. Majun 6. Buku manual (jika ada) a. Persiapan 1. Siapkan mesin, alat dan bahan yang diperlukan. 2. Periksalah oli mesin, air radiator dan bahan bakar. 3. Hidupkan mesin untuk pemanasan kurang lebih 5 menit. 4. Membuka cover kepala silinder. b. Cara Menyetel Celah Katup 1. Putar poros engkol hingga tanda pada puli poros engkol tepat dengan angka 0 pada tutup rantai timing. 2. Menentukan top kompresi silinder 1 atau 4, dapat dilakukan dengan cara sebagai berikut : a) Pada saat memutar poros engkol sambil memperhatikan katup masuk silinder mana yang bergerak. Lihatlah katup masuk atau push rod katup masuk pada silinder 1 atau 4 sambil menggerak-gerakkan puli poros engkol. b) Apabila yang bergerak push rod katup masuk silinder 4 pada saat anda menggerak-gerakkan atau memutar poros engkol, berarti ketika tanda pada puli tepat dengan tanda 0 : yang sedang mengalami top kompresi adalah silinder 1. Begitu juga sebaliknya. 3. Menentukan katup-katup yang boleh distel saat top kompresi silinder 1 atau 4 Caranya dengan melihat diagram/tabel proses kerja silinder atau bisa juga dengan menggerak-gerakkan puli poros engkol sambil melihat push rod katup yang tidak bergerak. Push rod yang tidak bergerak maka boleh disetel. 4. Setel celah katup sesuai spesifikasi. Penyetelan dilakukan dengan cara: a) Mengendorkan mur 12 menggunakan kunci ring 12. b) Menempatkan atau memasukkan feeler gauge ke dalam celah antara rocker arm dengan batang katup. c) Melakukan penyetelan dengan mengubah (mengencangkan/mengendorkan) baut penyetel dengan obeng. d) Setelah celah katup telah benar/sesuai, kencangkan mur penahan sambil menahan baut penyetelagar tidak bergerak. Lalu cek kembali celah katup dengan merasakan tarikan/gesekan dari feeler gauge. Ulangi cara tersebut jika belum menemukan kesesuaian. 5. Putar poros engkol 1 putaran (360°) sehingga tanda pada puli bertepatan dengan tanda 0 pada tutup rantai timing. 6. Menyetel celah katup untuk katup-katup yang belum disetel sesuai spesifikasi. 7. Coba hidupkan mesin, apakah sudah halus atau belum? Jika sudah maka anda berhasil. 7. Menutup kembali kepala silinder, lalu memasang komponen lainnya. 8. Bersihan objek kerja, alat, dan juga tempat kerja. Gambar 15 cara menyetel katup Gambar 16 cara menyetel katup Kesalahan yang Sering Terjadi 1. Salah menentukan top kompresi silinder. 2. Salah menentukan katup yang boleh disetel. 3. Sala h dalam menggunakan feeler gauge. 4. Piston lupa dan belum ditopkan. 5. Celah terlalu kendor atau terlalu rapat.

Rabu, 07 Mei 2014

komponen sistem mekanis katup

B. Komoponen sistem mekanisme katup 1. Sumbu nok Sumbu nok (camshaft) dilengkapi dengan sejumlah nok yang sama yaitu untuk katup hisap dan katup buang, dan nok ini membuka dan menutup katup sesuai timing (saat) yang ditentukan. Gigi penggerak distributor (distributor drive gear) dan nok penggerak pompa (fuel pump drive cam) juga dihubungkan dengan sumbu nok. Sprocket dan sebuah puli yang menempel pada ujung sumbu digerakan oleh poros engkol. Mesin 4A-F dan macam-macam mesin DOHC lainnya juga mempunyai tambahan roda gigi untuk menggerakan sumbu nok. Gambar 2. Sumbu nok 2 Pengangkat katup Pengangkat katup (valve lifter) adalah komponen yang berbentuk silinder pada mesin OHV, masing-masing dihubungkan dengan nok yang berhubungan dengan katup melalui batang penekan (push rod) perhatikan gambar. Pengangkat katup bergerak turun dan naik pada pengantarnya yang terdapat didalam blok silinder saat sumbu nok berputar dan juga membuka dan menutup katup. Mesin yang mempunyai pengangkat katup konvensional celah katupnya harus disetel dengan tepat, sebab tekanan panas mengakibatkan pemuaian pada komponen kerja katup. Beberapa mesin yang modern ada yang bebas penyetelan celah yaitu dengan menggunakan pengangkat katup hidraulis dan dalam pengaturannya celah katupnya dipertahankan pada 0 mm setiap saat. Ini dapat dicapai dengan hydraulic lifter atau sealed hydraulic lifter(terdapat pada mesin tipe OHV) atau katup last adjuster (terdapat pada mesin tipe OHC) Gambar 3. Pengangkat katup 3. Batang penekan Batang penekan (push rod) berbentuk batang yang kecil masing-masing dihubungkan pada pengangkat katup (valve lifter) dan rocker arm pada mesin OHV batang katup ini meneruskan gerakan dari pengangkat katup ke rocker arm. Gambar 4. Batang penekan 4. Rocker arm dan shaft Rocker arm dipasang pada rocker arm shaft. Bila rocker arm ditekan keatas oleh batang penekan (push rod), katup akan tertekan dan membuka. Rocker arm dilengkapi dengan skrup dan mur pengunci (lock nut) untuk penyetelan celah katup. Rocker arm yang menggunakan pengangkat katup hidraulis tidak dilengkapi skrup dan mur penyetel. Gambar 5. Rocker arm dan shaft